not1(true) -> false
not1(false) -> true
odd1(0) -> false
odd1(s1(x)) -> not1(odd1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(s1(x), y) -> s1(+2(x, y))
↳ QTRS
↳ DependencyPairsProof
not1(true) -> false
not1(false) -> true
odd1(0) -> false
odd1(s1(x)) -> not1(odd1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(s1(x), y) -> s1(+2(x, y))
ODD1(s1(x)) -> NOT1(odd1(x))
+12(x, s1(y)) -> +12(x, y)
+12(s1(x), y) -> +12(x, y)
ODD1(s1(x)) -> ODD1(x)
not1(true) -> false
not1(false) -> true
odd1(0) -> false
odd1(s1(x)) -> not1(odd1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(s1(x), y) -> s1(+2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ODD1(s1(x)) -> NOT1(odd1(x))
+12(x, s1(y)) -> +12(x, y)
+12(s1(x), y) -> +12(x, y)
ODD1(s1(x)) -> ODD1(x)
not1(true) -> false
not1(false) -> true
odd1(0) -> false
odd1(s1(x)) -> not1(odd1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(s1(x), y) -> s1(+2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
+12(x, s1(y)) -> +12(x, y)
+12(s1(x), y) -> +12(x, y)
not1(true) -> false
not1(false) -> true
odd1(0) -> false
odd1(s1(x)) -> not1(odd1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(s1(x), y) -> s1(+2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(s1(x), y) -> +12(x, y)
Used ordering: Polynomial interpretation [21]:
+12(x, s1(y)) -> +12(x, y)
POL(+12(x1, x2)) = 2·x1
POL(s1(x1)) = 2 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
+12(x, s1(y)) -> +12(x, y)
not1(true) -> false
not1(false) -> true
odd1(0) -> false
odd1(s1(x)) -> not1(odd1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(s1(x), y) -> s1(+2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(x, s1(y)) -> +12(x, y)
POL(+12(x1, x2)) = 2·x2
POL(s1(x1)) = 1 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
not1(true) -> false
not1(false) -> true
odd1(0) -> false
odd1(s1(x)) -> not1(odd1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(s1(x), y) -> s1(+2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
ODD1(s1(x)) -> ODD1(x)
not1(true) -> false
not1(false) -> true
odd1(0) -> false
odd1(s1(x)) -> not1(odd1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(s1(x), y) -> s1(+2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ODD1(s1(x)) -> ODD1(x)
POL(ODD1(x1)) = 2·x12
POL(s1(x1)) = 2 + 2·x12
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
not1(true) -> false
not1(false) -> true
odd1(0) -> false
odd1(s1(x)) -> not1(odd1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(s1(x), y) -> s1(+2(x, y))